A monotonicity property of Riemann's xi function and a reformulation of the Riemann hypothesis

نویسندگان

  • Jonathan Sondow
  • Cristian Dumitrescu
چکیده

We prove that Riemann's xi function is strictly increasing (respectively, strictly decreasing) in modulus along every horizontal half-line in any zero-free, open right (respectively, left) half-plane. A corollary is a reformulation of the Riemann Hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the S2(δ) distribution and the Riemann Xi function

The theory of S2(δ) family of probability distributions is used to give a derivation of the functional equation of the Riemann xi function. The δ deformation of the xi function is formulated in terms of the S2(δ) distribution and shown to satisfy Riemann’s functional equation. Criteria for simplicity of roots of the xi function and for its simple roots to satisfy the Riemann hypothesis are form...

متن کامل

On a New Reverse Hilbert\'s Type Inequality

In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.

متن کامل

Testing a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability

In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Proof of the Density Hypothesis

The Riemann zeta function is a meromorphic functionon the whole complex plane. It has infinitely many zeros and aunique pole at s = 1. Those zeros at s = −2,−4,−6, . . . areknown as trivial zeros. The Riemann hypothesis, conjectured byBernhard Riemann in 1859, claims that all non-trivial zeros of ζ(s)lie on the line R(s) =12 . The density hypothesis is a conjecturede...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2010